
Training a value function in the game of Go

Bo Peng∗

January 11, 2017

* This is not a research paper, but some thoughts on a possibly efficient method to train a

value function in the game of Go. The author welcome all critiques and discussions, and you can

reach me at "bo at withablink dot com".

In early 2016, Google Deepmind reshaped the study of computer Go by the celebrated Nature

paper, where a MCTS + SL + RL pipeline was proven to be highly successful.

The training of the policy networks pπ and pσ in the Nature paper are straightforward, while the

training of the value network vθ is more elusive, which requires a new RL policy network pρ and a

huge number of self-play positions.

This is an intriguing situation, because mathematically the perfect policy network can be quickly

and directly derived from the perfect value network (the best next move is the move that maximises

the value for the player, if the value function is perfect), but the reverse direction is less direct, where

one has to iterate the policy network and apply an end-game value function. In this sense, the value

function is more essential.

Here we purpose a method to train a value function V directly, without the appearance of the

policy network. And we aim to build a pure-value-network Go player.

1 Defining the value function

Let s be the board state. If s is an end-game position, a natural value function Ṽ (s) exists, which is

simply area scoring,

Ṽ (s) =
∑
i∈B

ṽ(s, i).

1



Here B = {1, · · · , 361} are the board intersections, and ṽ(s, i) is the final ownership function of the

board intersection i,

ṽ(s, i) =


1 i is owned by the player in the end-game position s

−1 i is owned by the opponent in the end-game position s

0 otherwise

.

This suggests an ownership function v(s, i) for any board states s and board intersection i,

v(s, i) =


1 i is owned by the player in the end-game position assuming perfect play from state s

−1 i is owned by the opponent in the end-game position assuming perfect play from state s

0 otherwise

where perfect play is assumed for both players.

And the value function V (s) for any board states s is defined by,

V (s) =
∑
i∈B

v(s, i).

This value function V (s) has merits over the widely-used "winning probability" W (s),

1. It can ensure a natural playing style (in the sense of maximising territory) even when the winning

probability is 100%.

2. It can easily deal with different komis.

3. It is more similar to the intuition of human players, and this can be helpful in Go education and

human studying.

One of the possible drawbacks is the winning probability is often reported to be a bit lower when

V (s) is used as the value function, because we can only approximate the perfect V (s). However, we

will show there are multiple ways to train V (s), and better training can lead to better results.

2 Training the value function

METHOD 1 (fit end-game state): The ownership function v(s, i) can be trained in a straightforward

way. For a game G where the end-game state se is known, we have the approximation for any state

s ∈ G ,

v(s, i) ≈ v(se, i).

2



So we can train v(s, i) to be equal to v(se, i), with a learning speed related to the number of moves

passed (because v(s, i) gets closer to v(se, i) as we move closer to the end-game).

Here biases are introduced because both players are not perfect. However, because v is an finer

function than V (which is already finer than W ), the bias is better controlled than the case of W , and

we can use all states in the game to train our network, instead of just picking 1 state in each game to

avoid over-fitting.

METHOD 2 (fit moves): Giving a board state s where the player is to play, let i be the move the

players chooses (in a human professional game, or, after MCTS in a self-play game). Let s+i be the

board state after the player played i. If we assume the player is perfect, i.e. the move i is the best

possible move, then we have,

V (s+i) ⩾ V (s+j) for all possible moves j.

Hence a method to train V (s) is,

Train V (s+j) to be equal to V (s+i), if V (s+j) > V (s+i).

And a method to write this in terms of v(s, k) is,

Train v(s+j , k) to be equal to v(s+j , k) +
V (s+i)− V (s+j)

361
for all k , if V (s+j) > V (s+i).

And there can also be some more aggressive methods, such as,

Train v(s+j , k) to be equal to min(v(s+j , k), v(s+i, k)) , for all k and j ̸= i.

The above method is a bit too aggressive, and one can create many interesting methods in between,

using the distribution of v(s+j , k) and v(s+i, k) (for example, just reducing some of the k such that

V (s+j) becomes same as V (s+i)). Moreover, we can also train V (s+i) to be a higher value if there are

j such that V (s+j) > V (s+i).

METHOD 3 (fit minimax property): The perfect value function shall have the minimax property in

the obvious way. So we can train our V (s) to satisfy the minimax property as well.

In fact, one can train it such that a shallow-level MCTS gives as close a result as a deeper-level

MCTS. This can be regarded as bootstrapping. And the program is less likely to develop bad habits

than applying RL on self-play results.

3



To summarise, we show it is possible to train a value function directly, without the appearance of

the policy network. And one can combine the above 3 methods to give better results.

3 Training results

[TODO: I AM COLLECTING DATA TO DO SOME TESTS...]

4


	Defining the value function
	Training the value function
	Training results

